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Information sharing influences which messages spread and shape beliefs, behavior, and 
culture. In a preregistered neuroimaging study conducted in the United States and 
the Netherlands, we demonstrate replicability, predictive validity, and generalizabil-
ity of a brain-based prediction model of information sharing. Replicating findings in 
Scholz et al., Proc. Natl. Acad. Sci. U.S.A. 114, 2881–2886 (2017), self-, social-, and 
value-related neural signals in a group of individuals tracked the population sharing of 
US news articles. Preregistered brain-based prediction models trained on Scholz et al. 
(2017) data proved generalizable to the new data, explaining more variance in popu-
lation sharing than self-report ratings alone. Neural signals (versus self-reports) more 
reliably predicted sharing cross-culturally, suggesting that they capture more universal 
psychological mechanisms underlying sharing behavior. These findings highlight key 
neurocognitive foundations of sharing, suggest potential target mechanisms for inter-
ventions to increase message effectiveness, and advance brain-as-predictor research.

information sharing | fMRI | brain-based prediction

Information sharing, online or offline, influences what messages reach people and shapes 
beliefs, behavior, and culture (1–4). Diverse actors, from social media users to politicians, 
marketers, and public health officials, are motivated to predict and maximize the reach of 
their content via sharing.

The value-based model of information sharing (5–8) posits that sharing is more likely 
if it is perceived to be valuable to the would-be sharer and that self- and social relevance 
are key sources of value. In two functional MRI (fMRI) studies using online news articles, 
Scholz et al. (5) showed that domain-general value signals in the brain tracked information 
sharing in the population. Furthermore, brain activity associated with self- and social 
relevance correlated with the value signal, supporting the idea that content which serves 
self- and social-related motives (e.g., expressing viewpoints or connecting with others) has 
higher sharing value (6, 8, 9).

The discovery that neural signals from a group of individuals hold information about 
large-scale behavior (10, 11) requires further tests on the replicability of the findings, the 
predictive validity of brain-based models in novel contexts, and the generalizability of 
these effects across populations.

This preregistered study (DOI: 10.17605/OSF.IO/JCVZ7) evaluates brain-based pre-
dictions against these three criteria. Adapting task procedures from ref. 5, participants 
from the United States and the Netherlands read and rated a new set of US-based news 
articles while undergoing fMRI.

First, we tested the replicability of the findings in ref. 5 by examining whether population 
sharing (defined as a news article’s number of shares on Facebook, see Materials and 
Methods) was associated with participants’ self-report ratings (preregistered hypothesis 
H1), as well as their self-, social- and value-related neural signals (H2a-c) in the new data.

Second, we trained and preregistered two prediction models with neuroimaging data 
from ref. 5—one with a priori brain’s regions of interest (ROI-based) and the other with 
voxels across the brain (voxel-based). A third ensemble model incorporated ROI- and 
voxel-based model scores and self-report ratings. We tested whether these model scores 
tracked population sharing of novel articles (H3-5).

Finally, to test the generalizability of brain-based predictions, we aggregated self-report 
ratings and neural signals per article as the expected sharing outcome and examined 
whether their predictiveness differed between the US and Dutch subsamples.

Results

Value-Based Sharing Model Replication. Testing preregistered hypotheses, self-report 
(H1), and self-, social- and value-related neural responses to news articles (H2a-c) tracked 
population sharing (Table 1, part A).
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Predictive Validity of Neural Signals. Prediction scores from the 
ROI-based model tracked population sharing (H3), while the 
voxel-based model did not (H4) and the ensemble model did (H5).

Generalizability of Brain-Based Predictions. Both aggregate self-
report ratings and ROI-based prediction scores tracked population 
sharing in ref. 5 and this study (Fig.  1A). Aggregate self-report 
ratings of US participants were more predictive than those of Dutch 
participants (Steiger’s test of two dependent correlations: Z = 2.003,  
P = 0.045), while the predictiveness of aggregate ROI-based prediction 
scores did not differ significantly between subsamples (Z = 0.108, 
P = 0.914). Finally, aggregate ROI-based prediction scores provided 
additional explanatory power beyond self-report ratings, whether for 
all participants or within national subsample (Table 1, part B).

Discussion

Can neural signals deepen our understanding of the psychological 
bases of large-scale behaviors, such as information sharing, and help 
predict message effects in the population (10, 11)? For the brain-as-
predictor literature to fulfill its potential, we need to test the replica-
bility of specific findings, the predictive validity of brain-based models 
in novel contexts, and its generalizability across populations.

Here, we demonstrated all three qualities in an extended, concep-
tual replication of ref. 5, which showed again self-, social- and 
value-related neural signals in study participants track population 
sharing of information. While the voxel-based model did not gen-
eralize to the new data, the theory-informed ROI-based model 
showed predictive validity in different participants and stimuli. This 
could indicate overfitting in the voxel-based model and/or more 
robust signals in the theory-informed ROIs. Consistent with prior 
literature (12, 13), neural signals explained variance in large-scale 
behaviors above and beyond self-reports alone. Finally, the predictive 
effect of neural signals was more generalizable across national sub-
samples than self-reports, suggesting that neural signals capture more 
universal psychological mechanisms underlying sharing behavior.

These findings highlight the importance of self-, social-, and value- 
related neural processes in sharing and suggest potential intervention 
targets to increase message effectiveness. More generally for the brain- 

as-predictor research, this work demonstrates the robustness of neural 
signals for explaining and predicting large-scale behaviors.

Materials and Methods
This study was preregistered (DOI: 10.17605/OSF.IO/JCVZ7) and approved by the 
Institutional Review Board at the University of Pennsylvania and the Faculty Ethics 
Review Board at the University of Amsterdam before data collection. Data and analysis 
code are available at http://doi.org/10.17605/OSF.IO/CAXFQ.

Participants. Ninety-four individuals (mean age = 21.4, SD = 2.6, range = 
18 to 31) received verbal and written information about the study at a Dutch  
(n = 50) and a US university (n = 44), offered informed consent, and participated 
during Summer and Fall 2021.

Stimuli and Task. During fMRI, participants read a subset of 96 New York Times 
news abstracts (published 2016–2019) then rated their intention to read the full 
article (Fig. 1B).

Population Sharing Measure. The dependent variable (DV) of all analyses is 
population sharing, defined as the normalized log-transformed total number 
of shares of all private and public Facebook posts containing the article’s URL 
(mean = 3,167, SD = 5255, range= 44 to 25,091), available via CrowdTangle, 
a Meta-owned tool that tracks content interactions.

Neuroimaging Data Acquisition and Processing. Blood oxygenation level 
dependent signal time series were preprocessed and modeled with boxcar regres-
sors of news abstracts and regressors of no interest, yielding one beta image per 
abstract per participant. Details on neuroimaging data analysis are described in 
the preregistration and SI Appendix.

Hypothesis Testing. Self-, social-, and value-related neural signals were mean activ-
ity in the single-trial beta images within preregistered ROIs based on Neurosynth 
(14) term association maps of “self-referential,” “mentalizing,” and “value,” excluding 
overlapping voxels (Fig. 1C). We estimated four linear mixed models, each model with 
the population sharing DV and one of the predictors (self-report rating and the three 
ROIs) as independent variable (IV) with random intercepts and slopes for participants.

Prediction Model Training and Testing. We trained and preregistered two 
prediction models with neuroimaging data in ref. 5 (Fig. 1D): the ROI-based model 
used nine Neurosynth ROIs, while the voxel-based model had 5,137 voxels that 
significantly tracked reading intention in ref. 5. Feature weights were estimated 
by ridge regression with eightfold cross-validation. The ensemble model had 

Table 1. Standardized coefficients of models predicting population sharing (DV) with self-report rating and neural 
signal IVs
A. Trial-level linear mixed models (Pre-registered hypothesis H1-5)

DV (Population sharing) ~ IV Scholz et al. (5) (N = 787 trials) Current study (N = 2,973 trials)

Replicating previous findings

IV: Self-report rating (H1) 0.186 *** [0.108, 0.265] 0.081 *** [0.045, 0.117]

IV: Self-related neural signal (H2a) 0.111 ** [0.036, 0.186] 0.074 ** [0.030, 0.118]

IV: Social-related neural signal (H2b) 0.106 ** [0.030, 0.182] 0.059 ** [0.018, 0.101]

IV: Value-related neural signal (H2c) 0.083 * [0.012, 0.154] 0.040 * [0.004, 0.076]

Testing pre-trained models

IV: ROI-based prediction score (H3) 0.135 ** [0.061, 0.208] 0.081 *** [0.039, 0.124]

IV: Voxel-based prediction score (H4) 0.802 *** [0.756, 0.848] 0.012 [−0.027, 0.052]

IV: Ensemble score (H5) 0.584 *** [0.520, 0.648] 0.075 *** [0.039, 0.111]

B. Article-level linear models (Cross-national generalizability of brain-based predictions)

DV (Population sharing) ~ IV1 + IV2 Scholz et al. (5) (N = 80 
articles)

Current study (N = 96 articles)

US participants US+NL US only NL only

IV1: Aggregate self-report rating 0.295 ** [0.077, 0.513] 0.248 * [0.056, 0.440] 0.366 *** [0.181, 0.551] 0.125 [−0.074, 0.325]

IV2: Aggregate ROI-based prediction score 0.222 * [0.004, 0.440] 0.273 ** [0.081, 0.465] 0.222 * [0.037, 0.407] 235 * [0.036, 0.435]

R2 0.179 0.160 0.202 0.079

AIC 217.2 261.6 256.7 270.5

AIC = Akaike information criterion. Square brackets indicate 95% CIs. *P < 0.05; **P < 0.01; ***P < 0.001.
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self-report ratings, ROI-based, and voxel-based prediction scores as features. We 
estimated three linear mixed regressions, each with the population sharing DV 
and one of the prediction scores (ROI-based, voxel-based, and ensemble) as IV 
with random intercepts and slopes for participants.

Article-Level Analysis. The expected population sharing for each article was 
calculated by aggregating self-report and neural responses per article, first from 
all participants and then separately within US and Dutch subsamples. We then 
calculated pairwise correlations with the population sharing DV for aggregate self-
report ratings and ROI-based prediction scores separately and finally estimated 
linear regressions with both IVs together.
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Fig.  1. (A) Standardized correlation plots of aggregate self-
report ratings and ROI-based prediction scores (X axis) against 
population sharing (Y axis). *P < 0.05; **P < 0.01; ***P < 0.001 
(B) Task overview (C) Self- (blue), social- (red), and value-related 
(green) region-of-interest (ROI) masks based on respective 
Neurosynth terms for hypothesis testing (D) Preregistered 
weights (scaled −1 to 1) of ROI-based and voxel-based prediction 
models.
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